If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+13x-7408=0
a = 3; b = 13; c = -7408;
Δ = b2-4ac
Δ = 132-4·3·(-7408)
Δ = 89065
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{89065}}{2*3}=\frac{-13-\sqrt{89065}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{89065}}{2*3}=\frac{-13+\sqrt{89065}}{6} $
| -ww=-6 | | 35t^2-18-5=0 | | 3t^2-19-40=0 | | 0.709^n=0.88 | | 24=6x+3x+6 | | 3(4x-1)+9-x=2x+8+ | | 18.5y+11.6=22.7 | | -rr=8 | | 2/3x+4=11 | | -5=5x-2x-5 | | 3x^2-9x+21=0 | | |3y-2|-7=4 | | |4x+1|=|6x+3| | | 3t+7t=-2 | | 2(x+8)-9=26-4(x-6) | | 4.9t^2+3t-850=0 | | 4(9.7-8.i)= | | 42x-22-18x=28 | | 15-4xx=-1 | | 5/3x+1/3x=34/3+8/3x | | -9(14-7x=1071 | | 4^x=78 | | 3z+20z=8 | | 18/5=x/4 | | -12=-2x-2x+4 | | 675/9=x/13 | | 2(x+1)=2/3x=9 | | 35=2x+x+2 | | 8/4=9/x | | -6(18x-9)+13x=63 | | s-8/8=s-7/6 | | 95/5=x/11 |